■ Contents of Each Session ■

1. Orientation
 - Chiyoda in brief
 - Chiyoda’s engineering training in variety
 - Objectives, contents and time table of this training program

2. Introduction to LNG
 - Basic knowledge of LNG:
 Related technical terminology, composition of natural gas/LNG/pipeline gas, transportation and storage of LNG, etc.
 - Worldwide LNG trade
 - LNG value chain:
 Gas production, liquefaction plants, LNG tankers, LNG receiving terminals and power generating facilities, gas/electricity consumers, etc.
 - Pipeline gas value chain:
 Gas production, gas compression plants, gas pipelines, pipeline transportation distance, power generating facilities, etc.

3. LNG Technology/Liquefaction Process
 - Outline of LNG plants:
 Block flow of LNG plants, trend of LNG plant capacity per train, natural gas usage, LNG market, key process of LNG plants, gas treating facilities, etc.
 - Refrigeration Cycle
 - Liquefaction Process:
 Introduction of licensors for various liquefaction process
 - Main Refrigerant Compressors
 - Turbines (Gas Turbines and Steam Turbines)
 - Main Cryogenic Heat Exchangers (MCHE)
 - LNG Storage and Loading:
 Storage tanks and LNG tankers
 - LNG Receiving Terminal and Power Station:
 Process flow of LNG receiving terminals, power generation trend utilizing LNG fuel, etc.

4. P&ID (Piping and Instrument Diagram)
 - What is P&ID
 - Work Steps of P&ID Development
 - Design Information on P&ID:
 Equipment/piping/instruments, operation and control, safety, maintainability, etc.
5. Process Safety
 - Process Safety Analysis:
 Why do we need to analyze the safety?, process safety evaluation procedure, definitions of hazard and risk
 - Hazard Evaluation Techniques:
 Identification of potential hazards, typical process safety analysis for new plant, etc.
 - HAZOP (Hazard and Operability Studies)’s objectives, scopes, and procedures
 - HAZOP Case Study Workshop

6. Instrument Technology
 - What is Instrumentation:
 Instrument key functions of LNG plants, etc.
 - Functions of Instrumentation:
 Typical flow control of instrumentation, DCS (Distributed Control System), SIS (Safety Instrumented System), and ESD (Emergency Shut Down), etc.
 - Field Instruments:
 Pressure gauges, temperature gauges, flowmeters, level gauges, control valves, analyzers, etc.
 - Introduction of Instrumentation Related Troubles

7. Material Technology
 - Definitions, types, and principles of corrosion
 - Typical Examples of Corrosion Problems and Countermeasures in LNG Plants:
 CO2 corrosion, sulfide stress cracking, hydrogen induced cracking, amine/SCC corrosion, low temperature embrittlement, mercury attack, seawater corrosion, external corrosion of carbon steel, external stress corrosion cracking (ESCC) of stainless steel
 - Non-Destructive Inspections of Plants:
 PT (Penetrant Test), MT (Magnetic particle Test), UT (Ultrasonic Test), RT (Radiographic Test), ET (Eddy current Test)
 - Introduction of Material/Corrosion Related Troubles at Existing Facilities

8. Advanced Technology
 - Failure Mechanism
 - Vibration:
 Types of vibration and their potential causes, basic theory of vibration, relevant specification and criteria
 - Water Hammer, pulsation:
 What are water hammer and pulsation?
 - Thermal Fatigue:
 Introduction of thermal fatigue caused problems and their countermeasures
 - Erosion/Corrosion:
 Introduction of erosion/corrosion caused problems and their countermeasures
9. RCA (Root Cause Analysis)
 - What is RCA? Basic of RCA
 - RCA’s objectives and technique
 - RCA Case Study Workshop (Workshop based on sample cases):
 Fault tree analysis, group discussion, presentation, comments

10. Wrap Up
 - Questions and answers throughout 4-day session
 - General comment by the lecturer(s)